

Purple Air: Air Quality Analysis

Eden Ehm BIA 742: Predictive Analytics Spring 2019

- The degree to which the ambient air is pollution free, as assessed by measuring a number of indicators of pollution.
- Implications for:
 - Health
 - Respiratory System
 - Skin
 - Exercise
 - Lifestyle
 - Safety

+ Decorah, Iowa's Air Quality

- We have really bad air quality!
- Why? Hypotheses:
 - Geography
 - Truck Traffic
 - Concentrated Feeding Operations
- Farms and Agriculture
- City Design
- Weather

What affects air quality?

Can we predict if air quality is safe using only data readily available on any basic weather report? (Temperature, Humidity, Date, Location, etc.)

Question - Why?

• We want to answer these questions for several reasons:

- Better understanding of what does or does not affect air quality
 - What is in our control? What is out of our control?
 - Knowing this has Environmental and Ecological implications
- Discovering if there are connections between the different sizes of particulate matter in the air
 - What is the pollution?
- Better lifestyle and health choices
 - Not everyone has their own air quality sensor or ability to look up air quality online. Can we get a rough idea of air quality (safe vs. unsafe) based on basic weather information?

+ Terminology

Air Quality Index: The Environmental Protection Agency (EPA) calculates the AQI for five major air pollutants regulated by the Clean Air Act: ground-level ozone, particle pollution (also known as particulate matter), carbon monoxide, sulfur dioxide, and nitrogen dioxide. For each of these pollutants, EPA has established national air quality standards to protect public health.

https://airnow.gov/index.cfm?action=aqibasics.aqi

Particulate Matter (PM): Particulate matter is the sum of all solid and liquid particles suspended in air many of which are hazardous. This complex mixture includes both organic and inorganic particles, such as dust, pollen, soot, smoke, and liquid droplets. These particles vary greatly in size, composition, and origin. They can be directly emitted or indirectly formed.

https://www.greenfacts.org/en/particulate-matter-pm/level-2/01-presentation.htm

+ Data Source

- Local Purple Air sensors
 - Decorah, IA downtown
 - Decorah 2 rural
- Utilize PMS5003 laser optical particle counters to collect air quality information from their surroundings. These sensors count suspended particles in sizes of 0.3, 0.5, 1.0, 2.5, 5.0 and 10µm. These particle counts are processed by the sensor using a complex algorithm to calculate the PM1.0, PM2.5 and PM10 mass in ug/m3.
- Also collect temperature, humidity, date, and other data

+ Preparing the .csv Files

- Downloaded .csv files for the "Decorah 2" (rural) and "Decorah, IA" (downtown) sensors
- I Year: 4/1/2018 through 4/1/2019
- Combined into one .csv file called PurpleAirDataCSV.csv
 - Easy to do with Copy/Paste on my computer
- **PurpleAirDataCSV.csv** raw data file is attached to this submission

Preparing the .csv Files

Added binary variable location_id

- l = Decorah,IA downtown sensor
- 0 = Decorah 2 rural sensor

Addedcharacter variable location

- "downtown" or "rural" classification
- Removed a duplicative column for PM2.5_CF_ATM_ug/m3

Created Total_PM variable

- Sum of PM1.0, PM2.5, and PM10.0
- Not a "scientific" measurement in terms of air quality
- A basic measure of "all of the particulate matter of all sizes in the air"

+ Adding a Binary Decision Variable

- Binary Variable called Safe
 - 1 = safe air quality
 - 0 = unsafe air quality (Total_PM >50)
- Purple Air sensors use US EPA PM2.5 AQI as their air quality index.
 - 0-50 safe
 - 50-100 acceptable
 - 100+ dangerous
- I chose 50 as the cutoff because it is just PM pollution. It is better to be conservative with one's health and safety!
- 50 indicates that there is enough PM in the air that individuals with compromised respiratory systems will have issues & individuals with healthy systems might experience trouble while exercising.

+ Adding a Binary Decision Variable

Total_PM > 50 means think twice before going outside!

Air Quality Index (AQI) Values	Levels of Health Concern	Colors
When the AQI is in this range:	air quality conditions are:	as symbolized by this color:
0 to 50	Good	Green
51 to 100	Moderate	Yellow
101 to 150	Unhealthy for Sensitive Groups	Orange
101 to 150 151 to 200	Unhealthy for Sensitive Groups Unhealthy	Orange Red
101 to 150 151 to 200 201 to 300	Unhealthy for Sensitive Groups Unhealthy Very Unhealthy	Orange Red Purple

https://airnow.gov/index.cfm?action=aqibasics.aqi

+ Adding a Binary Decision Variable

*Add Binary DV; Data ProjData.PurpleAirDataSAS; set ProjData.PurpleAirDataSAS; if Total_PM < 50 then Safe=1; else Safe=0; run;</pre>

+ Exploring the Data

proc contents

725,687 observations

No missing data

	-	1		1										
	location_id	location	created_at_String	created_at	entry_id	PM1.0	PM2.5	PM10.0	Uptime Minutes	ADC	Temperature_F	Humidity	Total_PM	Safe
1	1	downtown	2018-04-01 00:00:56 UTC	01APR2018:00:00:56	527938	1.98	2.43	2.81	319	-75	35	39	7.22	0
2	1	downtown	2018-04-01 00:02:17 UTC	01APR2018:00:02:17	527939	3.21	4.35	4.37	320	-76	35	39	11. <mark>9</mark> 3	0
3	1	downtown	2018-04-01 00:03:36 UTC	01APR2018:00:03:36	527940	6.21	7.84	9.35	321	-79	35	40	23.40	0
4	1	downtown	2018-04-01 00:04:56 UTC	01APR2018:00:04:56	527941	4.29	5.07	5.14	323	-78	34	40	14.50	0
5	1	downtown	2018-04-01 00:06:16 UTC	01APR2018:00:06:16	527942	2.46	3.31	4.28	324	-77	33	40	10.05	0
6	1	downtown	2018-04-01 00:07:36 UTC	01APR2018:00:07:36	527943	1.74	3.16	4.09	325	-77	34	40	8.99	0
7	1	downtown	2018-04-01 00:08:56 UTC	01APR2018:00:08:56	527944	2.27	3.50	3.86	327	-75	33	40	9.63	0
8	1	downtown	2018-04-01 00:10:16 UTC	01APR2018:00:10:16	527945	2.38	3.21	3.21	328	-74	34	41	8.80	0
9	1	downtown	2018-04-01 00:11:36 UTC	01APR2018:00:11:36	527946	1.72	2.74	3.70	329	-75	34	41	8.16	0
10	1	downtown	2018-04-01 00:12:56 UTC	01APR2018:00:12:56	527947	1.93	3.05	3.30	331	-74	34	41	8.28	0
11	1	downtown	2018-04-01 00:14:16 UTC	01APR2018:00:14:16	527948	2.56	3.49	4.63	332	-76	34	41	10.68	0
12	1	downtown	2018-04-01 00:15:36 UTC	01APR2018:00:15:36	527949	2.44	2.98	3.49	333	-74	33	41	8.91	0
13	1	downtown	2018-04-01 00:16:57 UTC	01APR2018:00:16:57	527950	1.82	3.18	3.91	335	-76	33	41	8.91	0
			2010 04 01 00.10.10		COTOF 4			A 17	000	70			0.40	

+Exploring the Data

	Alph	abetic	List o	f Variables and	d Attributes	5
#	Variable	Туре	Len	Format	Informat	Label
10	ADC	Num	8	F3.		ADC
12	Humidity	Num	8	F3.		Humidity
8	PM10_0_CF_ATM_ugm3	Num	8	F7.2		PM10.0_CF_ATM_ugm3
6	PM1_0_CF_ATM_ugm3	Num	8	F6.2		PM1.0_CF_ATM_ugm3
7	PM2_5_CF_ATM_ugm3	Num	8	F7.2		PM2.5_CF_ATM_ugm3
14	Safe	Num	8	F1.		Safe
11	Temperature_F	Num	8	F4.		Temperature_F
13	Total_PM	Num	8	F7.2		Total_PM
9	UptimeMinutes	Num	8	F5.		UptimeMinutes
4	created_at	Num	8	DATETIME19.		created_at
3	created_at_String	Char	23	\$23.	\$23.	created_at_String
5	entry_id	Num	8	F6.		entry_id
2	location	Char	8	\$8.	\$8.	location
1	location_id	Num	8	F1.		location_id

+ Exploring the Data: Looking for Problems

proc univariate

PM1.0, **PM2.5**, **PM10.0** have observations with a value of 0

- Does this mean there was no particulate matter in the air?
- More likely represents missing data, or for some reason PM not recorded
- This also affects Total_PM and Safe variables
- Table: example of this with PM1.0

Ex	treme O	bservati	ons			
Lov	west	Highest				
Value	Obs	Value	Obs			
0	697785	370.92	411095			
0	697784	371.10	197567			
0	594459	390.04	658137			
0	594458	396.35	492275			
0	594455	537.16	658135			

+ Exploring the Data: Looking for Problems

- proc univariate
- **Temperature (degrees F)** has incorrect observations
 - -225,131,217,255 are examples of incorrect temperatures!
 - This data will need to be accounted for
- Humidity (%) has incorrectobservations
 - l observation of 0 % humidity
 - Several observations of 255% humidity
 - Table: Humidity incorrect observations
- The sensors enter "+/-255" or "0" when there is an inability to read, sense, and save air quality data... these are values to look outfor!

Extreme Observations								
Lov	west	Highest						
Value	Obs	Value	Obs					
0	461136	255	711704					
11	394931	255	715364					
11	394930	255	717961					
11	394929	255	717982					
11	394928	255	722066					

Using SAS Enterprise Miner

Name	Role	Level	Report	Order	Drop	Lower Limit	Upper Limit
ADC	Input	Interval	No		No		
Humidity	Input	Interval	No		No		
PM10_0_CF_AT	Input	Interval	No		No		
PM1_0_CF_ATM	Input	Interval	No		No		
PM2_5_CF_ATM	Input	Interval	No		No		
Safe	Target	Binary	No		No		
Temperature_F	Input	Interval	No		No		
Total_PM	Input	Interval	No		No		
UptimeMinutes	Input	Interval	No		No		
created_at	Time ID	Interval	No		No		
created_at_Strin	Time ID	Nominal	No		No		
entry_id	ID	Nominal	No		No		
location	Input	Nominal	No		No		
location_id	ID	Nominal	No		No		

+ Exploring the Data: Histograms

- I used the maximum of 30 bins for each independent variable
- This gave me the best, detailed view of each histogram
- Histogram: Humidity with 10 vs.30 bins better picture w/ more bins

 We have some variables that are skewed and will need to be transformed and normalized before we use them to create a model
 PM 1.0, 2.5, and 10.0 variables are all right-skewed

+ Exploring the Data: Statistics

- Is the mean close to the median?
 - Most within 10 or less
- Skewness
 - Temperature is left skewed
 - ADC, PM variables, Safe are right skewed
- Kurtosis
 - ADC, PM variables have the most positive kurtosis, highly peaked

The SAS System

The MEANS Procedure

Variable	Label	Mean	Median	Mode	Minimum	Maximum	Range	Lower Quartile	Upper Quartile	Std Dev	Skewness	Kurtosis
ADC	ADC	-78.8488053	-79.0000000	-79.0000000	-96.0000000	31.0000000	127.0000000	-82.0000000	-77.0000000	11.0538287	8.6416324	83.5065683
created_at	created_at	1853521078	1853231679	1838302661	1838160035	1869695973	31535938.00	1845726272	1860953829	9027404.41	0.0798503	-1.1633741
Humidity	Humidity	54.7817903	55.0000000	55.0000000	0	255.0000000	255.0000000	45.0000000	68.0000000	14.4731152	0.0733987	1.6788523
PM10_0_CF_ATM_ugm3	PM10.0_CF_ATM_ugm3	13.4324544	9.6100000	1.0000000	0	2820.15	2820.15	4.1500000	18.0900000	14.7648911	20.3137780	2482.05
PM1_0_CF_ATM_ugm3	PM1.0_CF_ATM_ugm3	8.7646959	6.6500000	1.0000000	0	537.1600000	537.1800000	2.7200000	12.3100000	8.5494006	4.6813262	107.2959942
PM2_5_CF_ATM_ugm3	PM2.5_CF_ATM_ugm3	11.6923781	8.5800000	1.0000000	0	1099.29	1099.29	3.6000000	16.0700000	11.9973621	7.7419792	327.6363976
Total_PM	Total_PM	33.8895016	24.9000000	3.0000000	0	4135.77	4135.77	10.4700000	48.4800000	35.0063925	9.3574939	534.2395628
Temperature_F	Temperature_F	53.2400189	58.0000000	75.0000000	-225.0000000	217.0000000	442.0000000	36.0000000	76.0000000	39.1681749	-4.3103258	28.3159260
Safe	Safe	0.1033848	0	0	0	1.0000000	1.0000000	0	0	0.3044810	2.6053668	4.7879494
location_id	location_id	0.5047383	1.0000000	1.0000000	0	1.0000000	1.0000000	0	1.0000000	0.4999779	-0.0189540	-1.9996463

+ Cleaning the Data: Replacing Missing Data

No data is missing from original data set, do not need to impute

🖾 Samp	le Statistics									
Obs a	# Variable Name	Label	Туре	Percent	Minimum	Maximum	Mean	Number o	Mode Per	Mode
	1 location	location				· ·				
	2created_at_String	created_at	CLASS	0				128+	0.775194	2018-04-01
	3 ADC	ADC	VAR	0	-83	-69	-76.4352			
	4Humidity	Humidity	VAR	0	27	73	47.7165			
	5PM10_0_CF_ATM_ugm3	PM10.0_CF	VAR	0	0.7	54.72	11.00281			
	6PM1_0_CF_ATM_ugm3	PM1.0_CF	VAR	0	0	35	7.054203			
	7PM2_5_CF_ATM_ugm3	PM2.5_CF	VAR	0	0.25	47.25	9.453543			
	8 Safe	Safe	VAR	0	0	1	0.1335			
	9 Temperature_F	Temperatur	VAR	0	21	50	35.77367			
6	10 Total_PM	Total_PM	VAR	0	1.77	133.82	27.51056			
	11 UptimeMinutes	UptimeMin	VAR	0	0	1799	525.9792			
	12 created_at	created_at	VAR	0	1.8382E9	1.8386E9	1.8384E9			
5	13 entry_id	entry_id	VAR	0	527938	533937	530937.5			
	14location_id	location_id	VAR	0	1	1	1			

+ Cleaning the Data: Replacing Bad Data

- Using SAS Enterprise Miner Replacement Node
 - Default Limits Method: None
 - ReplacementValue: Missing puts a missing indicator instead of a value

User-Specified Training based on errors I uncovered

- Humidity cannot be over 100% or under 0%
- PM readings of 0 are an error
- Created a reasonable Temperature range for Iowa

+ Cleaning the Data: Replacing Bad Data

Limits and Replacement Values for Interval Variables

			Lower		Upper
Variable	Replace Variable	Lower limit	Replacement Value	Upper Limit	Replacement Value
Humidity	REP_Humidity	0.01		100	
Temperature_F	REP_Temperature_F	-50.00		120	
Total_PM	REP_Total_PM	0.01			

* Report Output

Replacement Counts

0bs	Variable	Label	Role	Train
1	Humidity	Humidity	INPUT	31
2	Temperature_F	Temperature_F	INPUT	8735
3	Total_PM	Total_PM	INPUT	52

+ Transforming the Data: Fixing Skew

We saw from the Histograms that several variables are non-normal and right-skewed

0	Explore - PROJDAT	- 🗆 🗙	
File View Actions Window			
🖨 🖬 Ö 🇳			
📲 Sample P 🗖 🔲 🖾	🖬 PM10_0 🗖 🔍 🖾	🖬 Total_PM 🗖 🗉 🖾	location 🗖 🗉 🖾
Apply Plot	participation and a second second	a di kalinda da Basar na sa kana kana kana kana kana kana kan	
🖾 PROJDAT 🗖 🗉 🖾	₩ PM1_0_C 🗖 🔍 🖾	🖬 UptimeM 🗖 🔍 🖾	location 🗖 🗉 🖾
Obs # location_id			
🖾 Sample S 🗖 🔲 🖾	🖬 PM2_5_C 🗖 🔍 🖾	🖬 created_at 🗖 🔲 🖾	
Obs # Variable	In the second second second second		
🖬 ADC 📃 📼 🔤	🖬 Safe 🛛 📼 🖾	🖬 created 🗖 🔍 🖾	
Humidity 🗖 🖾	🖬 Tempera 🗖 🔳 🖾	🖬 entry_id 🗖 🗉 🖾	

Transforming the Data: Fixing Skew

- Using SAS Enterprise Miner Transform Variables Node
 - Any variables appearing right skewed, changed Method to Log

+ Transforming the Data: Fixing Skew

Using SAS Enterprise Miner – Transform Variables Node

- Any variables appearing right skewed, changed Method to Log
- Normalized these variables
- Mean and Standard Deviation
- Skewness: now slightly left skewed, close to 0
- Kurtosis: now slightly negative, close to 0, less peaked

Label
PM10.0_CF
PM1.0_CF
PM2.5_CF
Transforme
Transforme
Transforme

+ SAS Enterprise Miner Diagram

- We will use this prepared data for future models and analysis
- em_save_train.sas7bdat prepared SAS data file
 is attached to this submission

• Next... Analyzing the Data

- Familiarize ourselves with the data
- Explore correlations & relationships between variables
- Create Models
 - Regression in Base SAS
 - Regression in SAS EM
 - Decision Tree (all variables included)
 - Decision Tree 2 (selected variables)
- Compare models
- Analyze results in context

Data Exploration: Familiarization

- How does air quality vary with the time of day?
- Trends higher around rush hour ~ 8-9am and 5-6pm
- Spikes Common Affected by immediate surroundings

4		520702	0.55		-						ž
1 downtown	2018-04-02 17:00:23 01C	529782	9.57	12.32	13.61	92	-80	42	37	35.5	0
1 downtown	2018-04-02 17:01:41 UTC	529783	14.58	18.19	20.35	93	-76	42	38	53.12	1
1 downtown	2018-04-02 17:03:01 UTC	529784	15.16	18.88	20.81	95	-75	42	> 38	54.85	1
1 downtown	2018-04-02 17:04:21 UTC	529785	8.05	10.23	11.55	96	-75	42	37	29.83	0
1 downtown	2018-04-02 17:05:42 UTC	529786	6.69	8.36	9.76	97	-74	41	37	24.81	0
1 downtown	2018-04-02 17:07:01 UTC	529787	7.02	8.75	9.2	99	-79	42	37	24.97	0
1 downtown	2018-04-02 17:08:22 UTC	529788	6.71	8.49	9.15	100	-77	42	37	24.35	0
1 downtown	2018-04-02 17:09:41 UTC	529789	7.89	10.2	11.55	101	-74	42	37	29.64	0
1 downtown	2018-04-02 17:11:01 UTC	529790	8.23	10.56	11.33	103	-77	42	37	30.12	0
1 downtown	2018-04-02 17:12:21 UTC	529791	7.68	10.11	10.77	104	-74	42	37	28.56	0
1 downtown	2018-04-02 17:13:41 UTC	529792	7.09	9.51	11.95	105	-77	43	37	28.55	0
1 downtown	2018-04-02 17:15:01 UTC	529793	7.67	9.93	11.74	107	-75	41	36	29.34	0
1 downtown	2018-04-02 17:16:21 UTC	529794	6.92	8.79	9.69	108	-74	42	37	25.4	0
1 downtown	2018-04-02 17:17:41 UTC	529795	7.07	8.77	10.27	109	-75	42	37	26.11	0
1 downtown	2018-04-02 17:19:01 UTC	529796	6.95	8.43	9.19	111	-78	42	37	24.57	0
1 downtown	2018-04-02 17:20:21 UTC	529797	7.02	8.41	10.91	112	-77	42	37	26.34	0
1 downtown	2018-04-02 17:21:41 UTC	529798	5.07	7.29	7.67	113	-73	42	37	20.03	0
1 downtown	2018-04-02 17:23:02 UTC	529799	5.5	6.41	7.11	115	-74	42	36	19.02	0
1 downtown	2018-04-02 17:24:21 UTC	529800	6	7.29	8.63	116	-75	42	36	21.92	0
1 downtown	2018-04-02 17:25:42 UTC	529801	9.16	11.16	12.12	117	-75	42	36	32.44	0
1 downtown	2018-04-02 17:27:01 UTC	529802	7	9.21	10.74	119	-78	42	36	26.95	0
1 downtown	2018-04-02 17:28:22 UTC	529803	7.41	10.24	10.95	120	-76	42	36	28.6	0
1 downtown	2018-04-02 17:29:42 UTC	529804	8.3	10.14	11.91	121	-77	42	36	30.35	0
1 downtown	2018-04-02 17:31:02 UTC	529805	7.07	9.2	10.05	123	-76	42	36	26.32	0
1 downtown	2018-04-02 17:32:21 UTC	529806	7.43	9.31	11.52	124	-77	43	36	28.26	0
1 downtown	2018-04-02 17:33:41 UTC	529807	7.43	9.14	9.52	125	-79	43	36	26.09	0
1 downtown	2018-04-02 17:35:01 UTC	529808	22.6	28.33	32.44	127	-74	42		83.37	1
1 downtown	2018-04-02 17:36:21 UTC	529809	6.51	7.82	8.92	128	-78	42	36	23.25	0
	2040 04 02 47 27 44 1170	500040	4.50		0.05	400	70	40	26	40.07	

+ Data Exploration: Familiarization

• Worst air quality?

4,135.77 Total_PM downtown 5/5/18 3:35pm

Best air quality?

0.02 Total_PM rural 10/11/18 from 8-11am

location_id	N Obs	Variable	Label	Mean	Median	Mode	Minimum	Maximum	Range
0	359405	ADC	ADC	-81.6355922	-81.0000000	-81.0000000	-96.0000000	31.0000000	127.0000000
		created_at	created_at	1853322988	1853225050	1854403200	1838160035	1869695922	31535887.00
		Humidity	Humidity	53.8394754	54.0000000	56.0000000	0	255.0000000	255.0000000
		PM10_0_CF_ATM_ugm3	PM10.0_CF_ATM_ugm3	11.6156655	8.3300000	1.0000000	0	1239.30	1239.30
		PM1_0_CF_ATM_ugm3	PM1.0_CF_ATM_ugm3	7.6494752	5.8200000	1.0000000	0	537.1600000	537.1600000
		PM2_5_CF_ATM_ugm3	PM2.5_CF_ATM_ugm3	10.1670129	7.4500000	1.0000000	0	917.6200000	917.6200000
		Total_PM	Total_PM	29.4321536	21.6400000	3.0000000	0	2694.08	2694.08
		Temperature_F	Temperature_F	50.8673876	61.0000000	-225.0000000	-225.0000000	217.0000000	442.0000000
		Safe	Safe	0	0	0	0	0	0
1	366282	ADC	ADC	-76.1143409	-78.0000000	-78.0000000	-96.0000000	31.0000000	127.0000000
		created_at	created_at	1853715450	1853238359	1845072000	1838160056	1869695973	31535917.00
		Humidity	Humidity	55.7043435	56.0000000	55.0000000	14.0000000	255.0000000	241.0000000
		PM10_0_CF_ATM_ugm3	PM10.0_CF_ATM_ugm3	15.2151329	11.0000000	1.0000000	0	2820.15	2820.15
		PM1_0_CF_ATM_ugm3	PM1.0_CF_ATM_ugm3	9.8589781	7.6000000	1.0000000	0	371.1000000	371.1000000
		PM2_5_CF_ATM_ugm3	PM2.5_CF_ATM_ugm3	13.1891042	9.8100000	1.0000000	0	1099.29	1099.29
		Total_PM	Total_PM	38.2631622	28.4700000	3.0000000	0	4135.77	4135.77
		Temperature_F	Temperature_F	55.5628925	56.0000000	74.0000000	-220.0000000	101.0000000	321.0000000
		Safe	Safe	0.2048285	0	0	0	1.0000000	1.0000000

Data Exploration: Correlation

How are PM 1.0, 2.5, 10.0, and Total related?

- They are correlated with one another with a Prob < |r| of <.0001
- If there is more of one PM size in the air, there is likely more of the other PM sizes in the air as well
 - Makes sense with what we know about PM behavior
- Total_PM and Safe are a function of PM 1.0, 2.5, 10.0
- These variables are redundant
- Will need to exclude them from our model

+ Data Exploration: Correlation

				Pearson Corre Prob > r ur Number of	lation Coefficients nder H0: Rho=0 Observations				
	ADC	created_at	Humidity	PM10_0_CF_ATM_ugm3	PM1_0_CF_ATM_ugm3	PM2_5_CF_ATM_ugm3	Total_PM	Temperature_F	Safe
ADC ADC	1.00000 725887	0.20496 <.0001 725687	-0.01671 <.0001 716531	0.04433 <.0001 725687	0.04101 <.0001 725687	0.04268 <.0001 725687	0.04333 <.0001 725687	-0.10480 <.0001 716531	0.08871 <.0001 725687
created_at created_at	0.20498 <.0001 725887	1.00000 725687	-0.05904 <.0001 716531	0.08579 <.0001 725887	0.05289 <.0001 725687	0.06965 <.0001 725687	0.07297 <.0001 725687	-0.29873 <.0001 716531	-0.02731 <.0001 725687
Humidity Humidity	-0.01671 <.0001 716531	-0.05904 <.0001 716531	1.00000 716531	0.16129 <.0001 716531	0.16256 <.0001 716531	0.16804 <.0001 716531	0.16534 <.0001 716531	-0.30080 <.0001 716531	0.12300 <.0001 718531
PM10_0_CF_ATM_ugm3 PM10.0_CF_ATM_ugm3	0.04433 <.0001 725887	0.08579 <.0001 725687	0.16129 <.0001 716531	1.00000 725887	0.94788 <.0001 725687	0.98419 <.0001 725887	0.99000 <.0001 725687	0.02910 <.0001 716531	0.45590 <.0001 725687
PM1_0_CF_ATM_ugm3 PM1.0_CF_ATM_ugm3	0.04101 <.0001 725887	0.05289 <.0001 725687	0.16256 <.0001 716531	0.94788 <.0001 725687	1.00000 725687	0.98885 <.0001 725887	0.98165 <.0001 725687	0.05858 <.0001 716531	0.47692 <.0001 725687
PM2_5_CF_ATM_ugm3 PM2.5_CF_ATM_ugm3	0.04268 <.0001 725887	0.08965 <.0001 725687	0.16804 <.0001 716531	0.98419 <.0001 725687	0.98685 <.0001 725687	1.00000 725887	0.99830 <.0001 725687	0.04481 <.0001 716531	0.47516 <.0001 725687
Total_PM Total_PM	0.04333 <.0001 725687	0.07297 <.0001 725687	0.16534 <.0001 716531	0.99000 <.0001 725687	0.98165 <.0001 725687	0.99830 <.0001 725687	1.00000 725887	0.04138 <.0001 716531	0.47161 <.0001 725687
Temperature_F Temperature_F	-0.10480 <.0001 716531	-0.29873 <.0001 716531	-0.30080 <.0001 716531	0.02910 <.0001 716531	0.05658 <.0001 716531	0.04461 <.0001 718531	0.04138 <.0001 716531	1.00000 716531	0.04685 <.0001 716531
Safe Safe	0.06871 <.0001 725687	-0.02731 <.0001 725687	0.12300 <.0001 716531	0.45590 <.0001 725687	0.47692 <.0001 725687	0.47516 <.0001 725687	0.47161 <.0001 725687	0.04685 <.0001 716531	1.00000 725687

The SAS System

The CORR Procedure

1 With Variables:	Safe
8 Variables:	ADC created_at Humidity PM10_0_CF_ATM_ugm3 PM1_0_CF_ATM_ugm3 PM2_5_CF_ATM_ugm3 Total_PM Temperature_F

	Pearson Correlation Coefficients Prob > r under H0: Rho=0 Number of Observations								
	ADC	created_at	Humidity	PM10_0_CF_ATM_ugm3	PM1_0_CF_ATM_ugm3	PM2_5_CF_ATM_ugm3	Total_PM	Temperature_F	
Safe	0.06871	-0.02731	0.12300	0.45590	0.47892	0.47516	0.47161	0.04685	
Safe	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	
	725687	725687	716531	725687	725887	725687	725687	716531	

What affects air quality?

Can we predict if air quality is safe using only data readily available on any basic weather report? (Temperature, Humidity, Date, Location, etc.)

Review of Variables

- Date and time air quality reading was collected
- Entry Identifier
- PM1.0 CF ATM ug/m3 (particulate matter 1 μm or less in diameter)
- PM2.5 CF ATM ug/m3 (particulate matter 2.5 μm or less in diameter)
- PM 10.0 CF ATM ug/m3 (particulate matter 10 μm or less in diameter)
- Total PM a user-created variable of total PM 1.0, 2.5, and 10.0 in the air
- Safe user-created variable of if air quality is safe or not (1=safe, 0=unsafe)
- Uptime Minutes
- Temperature (degrees Fahrenheit)
- Humidity (as a percent)
- Analog to Digital Converter (ADC) reading
- Location user-created character variable
- Location Identifier user created binary variable with 1=downtown, 0=rural

μm = micrometer CF ATM = cubic foot of atmosphere PM = particulate matter

- Decision Variable: Safe
 - This will be my target variable
- Independent Variables:
 - Humidity___
 - Temperature_F
 - Created_At
 - Location_ID
 - These will be predictor variables

+ Modeling Method: Logistic

• We have a Binary Decision variable – perfect for Logistic Regression

Base SAS

- Examine Data, Variables, and Relationships between variables
 - Proc corr
 - Proc univariate
 - Proc means
 - Proc sgplot
- Preliminary modeling
 - Proc logistic
 - Proc freq

Modeling Method: Logistic

Safe = -21.6428 + 17.9505 * Location_ID + 0.03565 * Humidity + 0.00457 * Temperature_F

Temperature and Humidity are significant

-								
Convergence criterion (GCONV=1E-8) satisfied.								
Model Fit Statistics								
Criterion	Intercept Only	Intercept and Covariates						
AIC	480509.79	357114.90						
SC	480521.27	357160.83						
-2 Log L	480507.79	357108.90						

Model Convergence Status

Testing Global Null Hypothesis: BETA=0							
Test	Chi-Square	DF	Pr > ChiSq				
Likelihood Ratio	123400.888	3	<.0001				
Score	92037.4875	3	<.0001				
Wald	11469.2296	3	<.0001				

Analysis of Maximum Likelihood Estimates							
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq		
Intercept	1	-21.6428	25.4753	0.7217	0.3958		
location_id	1	17.9505	25.4753	0.4965	0.4810		
Humidity	1	0.0365	0.000369	9782.0850	<.0001		
Temperature_F	1	0.00457	0.000193	558.9021	<.0001		

Odds Ratio Estimates							
Effect	95% Wald Point Estimate Confidence Limits						
location_id	>999.999	<0.001	>999.999				
Humidity	1.037	1.036	1.038				
Temperature_F	1.005	1.004	1.005				

Modeling Method: Logistic

- It is 65 degrees F, 50% humidity, and you live 5 blocks from downtown.
- Safe = -21.6428 + (17.9505 * 1) + (0.03565 * 50) + (0.00457 * 65) Safe = -1.61275
- Will examine Logistic Regression Model closer in SAS EM
 - Prepared data
 - Training data

+ Data Exclusion

Drop Node -

put before every model

- Variables to be excluded
 - Redundant
 - Irrelevant

Name	Drop $ abla$	Role	Level
entry_id	Yes	ID	Nominal
ADC	Yes	Input	Interval
LOG_PM2_5_CF	Yes	Input	Interval
created_at_Strin	Yes	Input	Nominal
dataobs	Yes	ID	Interval
UptimeMinutes	Yes	Input	Interval
Total_PM	Yes	Rejected	Interval
LOG_PM1_0_CF	Yes	Input	Interval
REP_Total_PM	Yes	Input	Interval
LOG_PM10_0_C	Yes	Input	Interval
REP_Temperatu	Default	Input	Interval
location	Default	Input	Nominal
Safe	Default	Target	Binary
Temperature_F	Default	Rejected	Interval
Humidity	Default	Rejected	Interval
REP_Humidity	Default	Input	Interval
location_id	Default	ID	Binary
created at	Default	Time ID	Interval

+ Modeling Method: Logistic

We have a Binary Decision variable – perfect for Logistic Regression

SAS Enterprise Miner:

- Logistic Regression Regression Node
- Using Prepared Data Set Replace, Transform
- Partition 67% train, 33% Validate
- **Drop Node** Remove irrelevant and unnecessary variables
- **Safe** will be the Target Variable
- Analyze Results
 - Analysis of Maximum Likelihood Estimates Significance of each variable
 - Odds Ratios Estimates Chances of Safe or L
 - AIC Fit Statistic for the model

Modeling Method: Logistic

- Analysis of Maximum Likelihood Estimates: Significance of each variable
- All variables used in the Selected model
- All variables PR < ChiSq is less than 0.05
 - All variables are significant to the model!
 - Estimate: Location has the most impact
 - Humidity and Temperature have small impact

Analysis of Maximum Likelihood Estimates

				Standard	Wald		Standardized	
Parameter		DF	Estimate	Error	Chi-Square	Pr > ChiSq	Estimate	Exp(Est)
Intercept		1	-10.6159	2.1204	25.07	<.0001		0.000
REP_Humidity		1	0.0364	0.000451	6507.59	<.0001	0.2729	1.037
REP_Temperature	_F	1	0.00446	0.000236	356.59	<.0001	0.0597	1.004
location	downtown	1	6.9347	2.1202	10.70	0.0011		999.000

Modeling Method: Logistic

- Odds Ratios Estimates: Chances of Safe/Unsafe air quality
- For each additional % Humidity, the odds of Safe increase by 3.7%
- For each additional degree F, the odds of Safe increase by 0.4%
- Location is a determining factor: rural has higher chances of unsafe
 Odds Ratio Estimates

			Point
			Estimate
			1.037
			1.004
downtown	vs	rural	999.000
	downtown	downtown vs	downtown vs rural

- **AIC:** Fit Statistic for the model
- 241,836.1 (better than Base SAS AIC of 357,114.50)

Fit Statistics						
Target	Target Label	Fit Statistics	Statistics Label	Train	Validation	Test
Safe	Safe	_AIC_	Akaike's Information Criterion	241836.1		
Safe	Safe	ASE_	Average Squared Error	0.080053	0.08	
Safe	Safe	_AVERR_	Average Error Function	0.248687	0.24881	
Safe	Safe	_DFE_	Degrees of Freedom for Error	486206		
Safe	Safe	DFM	Model Degrees of Freedom	4		
Safe	Safe	_DFT_	Total Degrees of Freedom	486210		
Safe	Safe	_DIV_	Divisor for ASE	972420	478954	
Safe	Safe	_ERR_	Error Function	241828.1	119168.5	
Safe	Safe	_FPE_	Final Prediction Error	0.080054		
Safe	Safe	_MAX_	Maximum Absolute Error	0.927548	0.939909	
Safe	Safe	_MSE_	Mean Square Error	0.080053	0.08	
Safe	Safe	NOBS_	Sum of Frequencies	486210	239477	
Safe	Safe	NW_	Number of Estimate Weights	4		
Safe	Safe	RASE_	Root Average Sum of Squares	0.282936	0.282842	
Safe	Safe	RFPE	Root Final Prediction Error	0.282938		
Safe	Safe	RMSE	Root Mean Squared Error	0.282937	0.282842	
Safe	Safe	SBC	Schwarz's Bayesian Criterion	241880.5		
Safe	Safe	_SSE_	Sum of Squared Errors	77844.69	38316.12	
Safe	Safe	SUMW_	Sum of Case Weights Times F	972420	478954	
Safe	Safe	_MISC_	Misclassification Rate	0.103385	0.103384	

- A Decision Tree makes sense since we are trying to predict air quality and decide if it is safe or unsafe based on other factors/variables

SAS Enterprise Miner:

- Decision Tree Decision Tree Node
- Do NOT need to use Prepared Data Set
- Will partition the data for training Data Partition Node
 - 67% Train and 33% Validate
- **Safe** will be the Target Variable
- Analyze Results
 - Event Classification Table True and False Negatives and Positives
 - Decision Tree see what is the Root Node
 - AIC Fit Statistic for the model

Curious... All Variables

Variable Importance

					Ratio of
		Number of			Validation
		plitting		Validation	to Training
Variable Name	Label	Rules	Importance	Importance	Importance
Total_PM	Total_PM	1	1.0000	1.0000	1.0000
location	location	1	0.9203	0.9149	0.9942
Temperature_F	Temperature_F	2	0.3815	0.3859	1.0115
ADC	ADC	2	0.2450	0.2423	0.9893
Humidity	Humidity	4	0.2085	0.1986	0.9524
UptimeMinutes	UptimeMinutes	2	0.0545	0.0555	1.0188

This is not helpful to answering our questions.

- This includes redundant and irrelevant
 - Variables not relevant to our questions!

Drop Node -

Drop Node –	<u>20,</u>				Variables - Drop2
removed variables	(none)	✓ □ n	ot Equal to	✓ Mining	
	Name	Drop	Role	Level	
	ADC	Ves	Inout	Interval	
	Humidity	Default	Input	Interval	
	PM10 0 CE AT	Yes	Input	Interval	
	PM1 0 CF ATM	Yes	Input	Interval	
	PM2 5 CF ATM	Yes	Input	Interval	
	Safe	Default	Target	Binary	
	Temperature_F	Default	Input	Interval	
	Total_PM	Yes	Input	Interval	
	UptimeMinutes	Yes	Input	Interval	
	dataobs	Yes	ID	Interval	
	created_at	Default	Time ID	Interval	
	created_at_Stri	Yes	Input	Nominal	
	entry_id	Yes	ID	Nominal	
	location	Default	Input	Nominal	
	location_id	Default	ID	Binary	

1 = Safe0 = Unsafe

Root node = Location

1 = Safe

- RURAL has 0% Chance of Safe Air DOWNTOWN has 20% Chance of Safe Air
 - Seems counterintuitive... unexpected results are still results! More later...

- Drier Air has more PM
- Humid Air has 25% & Dry Air has 6% chance of being Safe

Cold Air (10 degrees+ below freezing) 5% or less chance Safe

- More Unsafe as it gets colder
- Warmer Air 25% Safe
 - depends on Humidity: 25-27% chance Safe if dry, 13% chance Safe if humid

- Further broken down by Temperature and Humidity
- In general:
 - Colder = More Likely to be Unsafe, Warm = More likely to be Safe
 - Dry = More Likely to be Unsafe, Humid = More Likely to be Safe
 - Cold and Dry is BAD! Warm and Humid is BETTER!

Location is most important, followed by Humidity, then Temperature

Variable Importance

					Ratio of
		Number of			Validation
		Splitting		Validation	to Training
Variable Name	Label	Rules	Importance	Importance	Importance
location	location	1	1.0000	1.0000	1.0000
Humidity	Humidity	3	0.6232	0.6310	1.0125
Temperature_F	Temperature_F	5	0.2568	0.2666	1.0378

Event Classification Table: True/False Negatives and Positives

Classification Table

Data Role=TRAIN Target Variable=Safe Target Label=Safe

Target	Outcome	Target Percentage	Outcome Percentage	Frequency Count	Total Percentage
0	0	89.6827	99.9819	435864	89.6452
1	0	10.3173	99.7533	50143	10.3130
0	1	38.9163	0.0181	79	0.0162
1	1	61.0837	0.2467	124	0.0255

Data Role=VALIDATE Target Variable=Safe Target Label=Safe

Target	Outcome	Target Percentage	Outcome Percentage	Frequency Count	Total Percentage
0	0	89.6819	99.9800	214676	89.6437
1	0	10.3181	99.7617	24699	10.3137
0	1	42.1569	0.0200	43	0.0180
1	1	57.8431	0.2383	59	0.0246

Event Classification Table: True/False Negatives and Positives

Event Class	sification T	able	
Data Role=	TRAIN Target	=Safe Target	Label=Safe
False	True	False	True
Negative	Negative	Positive	Positive
50143	435864	79	124
Data Role='	VALIDATE Tar	get=Safe Tar	get Label=Safe
False	True	False	True
Negative	Negative	Positive	Positive
24699	214676	43	59

- <u>Misclassification Rate for Validation Data Set:</u> 10.3% (False Positive + False Negatives) / Total Only wrong 10.3% of the time
- <u>Specificity for Validation Data Set:</u> 99.98%
 True Negative Predicted / Actual Negative
 When it is false/Unsafe, how often does it predict false?
- Sensitivity for Validation Data Set: 0.2383% True Positive Predicted / Actual Positive When it is true/Safe, how often does it predict true?

- Fit Statistics
- Average Square Error closer to 0 is better
- Similar in Train and Validation data sets: Not over fitting or under fitting the model

Fit Statistics						
Target	Target Label	Fit Statistics	Statistics Label	Train	Validation	Test
Safe	Safe	_ASE_	Average Squared Error	0.077385	0.077409	
Safe	Safe	_DFT_	Total Degrees of Freedom	486210		
Safe	Safe	_DIV_	Divisor for ASE	972420	478954	
Safe	Safe	_MAX_	Maximum Absolute Error	0.999148	0.970717	
Safe	Safe	MISC	Misclassification Rate	0.103293	0.103317	
Safe	Safe	NOBS_	Sum of Frequencies	486210	239477	
Safe	Safe	_RASE_	Root Average Squared Error	0.278181	0.278224	
Safe	Safe	_SSE_	Sum of Squared Errors	75250.57	37075.22	

+ Compare Decision Trees

Tree 1 (all variables) is better, but it doesn't make sense given our questions.

Tree 2 is most helpful for someone who doesn't know air quality readings!

Fit Statistics

Model Selection based on Valid: Misclassification Rate (_VMISC_)

				Valid:		
			Valid:	Average Squared	Train: Misclassification	Average
Selected	Model		Misclassification			Squared
Model	Node	Model Description	Rate	Error	Rate	Error
Y	Tree	Decision Tree	0.02266	0.014832	0.02193	0.015217
	Tree2	Decision Tree (2)	0.10332	0.077385	0.10329	0.077409

SAS Enterprise Miner:

- Compare Regression & Decision Tree 2 Model Comparison Node
- Which does SAS EM think is better?
- Analyze Results
 - Fit Statistics Which is Chosen, denoted with a Y
 - ROC Chart Which has more under the curve?
 - Does this make sense?

- Fit Statistics Decision Tree 2 is chosen
 - Slightly lower Misclassification Rates
 - Slightly lower Average Squared Errors

Fit Statistics

Model Selection based on Valid: Misclassification Rate (_VMISC_)

				Valid:		
			Valid:	Average	Train:	Average
Selected	Model		Misclassification	Squared	Misclassification	Squared
Model	Node	Model Description	Rate	Error	Rate	Error
Y	Tree2	Decision Tree (2)	0.10332	0.077385	0.10329	0.077409
	Reg	Regression	0.10338	0.080053	0.10339	0.080000

- ROC Chart: Plots Sensitivity against Specificity
 - Decision Tree 2 closest to top left hand corner, more area under curve

- SAS EM decided **Decision Tree 2** is best mathematically. Barely.
- Is this model also the most helpful when answering our question
 - What affects air quality?
 - Can we predict if air quality is safe using only data readily available on any weather report?
- Yes! The decision tree creates a nice way to see if the air quality is Safe or Unsafe.

- <u>Example</u>: It is 65 degrees Fahrenheit, 50% humidity, and you live 5 blocks from downtown.
- 27% Safe
 73% Unsafe
- Consider YOUR context to make a decision!

+ Final SAS EM Diagram

Momentary readings vs. EPA AQI is 24-hour average of readings

Biased towards spikes, which can be good or bad

Low cost sensor

- Not as sophisticated, finessed, or calibrated as other sensors
- South Coast Air Quality Management District: read high, specifically PM 2.5 levels overestimated by 36-48%
- Local conditions at sensor site
- Measure of PM only! The five major air pollutants regulated by the Clean Air Act are ground-level ozone, particulate matter, carbon monoxide, sulfur dioxide, and nitrogen dioxide. Not a holistic picture.

Results & Conclusions

Temperature and Humidity do matter

- Colder = More Likely to be Unsafe, Warm = More likely to be Safe
- Dry = More Likely to be Unsafe, Humid = More Likely to be Safe
- Cold and Dry is BAD! Warm and Humid is BETTER (but not great)!

Location matters a lot

- Less downtown/rural and more the DETAILS of that location
- Cause spikes that linger
- Decorah, IA
- Decorah 2

Results & Conclusions

- Each bar is 30 CF ATM ug/m3 of Total_PM
- Most days okay
- But when it's bad, it's bad
- Enough to make an informed choice
 - Cold and dry + bad AQI = stay inside
 - Cold and dry + health issues = stay inside

2000

Total PM

Cold and dry + exercising near rural sensor = stay inside

3000

4000

Consider context!

1000

Must also monitor indoor air quality!

Percent

60

50

40

30

20

10

0

Recommendations & Future Study

- Make informed choices! Do what you're comfortable with!
 - Tradeoffs!
- Need to study <u>COMPLETE</u> picture of Air Quality
 - Purple Air sensors monitor only one element of AQI
 - Need affordable sensors that monitor and report ALL 5 elements
 - Individuals have different sensitivities
 - Re-do analysis with more AQI factors included, more data, different locations
 - Might find different results
- A decent AQI doesn't mean we shouldn't work towards cleaner air!

